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Biological-experimental 
background and motivation



Noise in biological systems Mathematisch
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Noise in biological systems:

i.e. preventing side effects: robustness

Main view has been
Organisms, especially small sized, e.g. unicellular,
must deal with the nuisance of noise 
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– Intrinsic noise : 
originating from the ‘design’ of the biochemical cellular system, 
caused by small molecular numbers, thermodynamic fluctuations
e.g. regulation: single (large) DNA molecule, few-to-one interaction…

– Extrinsic noise : 
originating from the unpredictability, randomness in the 
environment, having effects on the organism
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Noise in biological systems:

i.e. intrinsic noise in the system has a function too, in specific cases.

New complementary view is developing

Organisms may exploit noise to increase their 
competitivity as species  

Noise in biological systems
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i.e. intrinsic noise in the system has a function too, in specific cases.

1.) Mathematical modeling and analysis is required to 
get further understanding of the extent of effects 
caused by noise in biological systems.  

2.) Understand mathematically to what extent the 
behaviour of deterministic models of biosystems
are changed when random effects are added.
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3 types of motivating examples 
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3 types of motivating examples 

A.) Random interventions at fixed times

B.) Deterministic interventions at random times

C.) Random interventions at random times
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3 types of motivating examples 
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3 types of motivating examples 

A.) Random interventions at fixed times

(  B.) Deterministic interventions at random times )

(  C.) Random interventions at random times )
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Some motivation comes from experimental work on bacteria 

in the interdisciplinary applied research project in the Netherlands 

BetNet : ‘Bet -hedging Networks’

funded by the Dutch funding agency for scientific research 

‘The evolution of stochastic heterogeneous networks as bet-hedging 
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‘The evolution of stochastic heterogeneous networks as bet-hedging 
adaptations to fluctuating environments’

Oscar Kuipers
Jeroen Siebring

(Microbiology group, 
Rijksuniversiteit Groningen )

Patsy Haccou (Theoretical biology group, 
Leiden University)Fátima Drubi

Lorenzo Sella

Michael Emmerich

SH

(Computer Science, Leiden University)

(Mathematics, Leiden University)
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A.) Random interventions at fixed times

(as part of an experimental procedure)

Sampling growing microbial colonies 
or (plant) cell suspension cultures

Motivating examples
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Sample volume may be kept the same,
variation in the number ‘caught’Fermentor (from Jeroen Siebring, Kuipers’ Lab, RUG)

Cell suspension 
culture

Cell count (Bill Flanagan)
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A.) Random interventions at fixed times
Sampling growing microbial colonies 
or (plant) cell suspension cultures

Motivating examples
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To what extent will sampling or harvesting influence 
the development of the bacterial / cell population? 

Intuition:
Small samples will not matter too much.

But what is ‘small’ (and much)?



Applications
-- examples -- Mathematisch
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B.) Deterministic interventions at random times

A model for dividing cells
Lasota & Mackey
J. Math. Biol. 38 (1999), 241-261

Internal state of individual cell:

(10) Sander Hille 21 June 2013 Bedlewo

Dividing Streptococcus bacteria

Budding yeast

molecule numbers (not concentrations).

When cells divide, the molecules in the 
mother cell are distributed between 
mother and daughter cell 

Lasota & Mackey considered equal (deterministic) 
distribution at random division times 
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C.) Random interventions at random times
Growth in a random environment
Experimental microbiology group of Oscar Kuipers at 
Rijksuniversiteit Groningen (NL) grows Bacillus subtilis
bacteria under varying conditions.

E.g. feeding glucose (a.o.) at 

Motivating examples
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Fermentor (from Jeroen Siebring, Kuipers’ Lab, RUG)

E.g. feeding glucose (a.o.) at 
randomly varying times intervals 
and/or in varying amounts

Bacillus subtilis (like other 
bacteria) has various survival 
strategies under resource 
limitations.
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Growth in a random environment

Bacillus subtilis’ survival strategies: spore

– activitation of flagellar motility ,
to move towards new food sources 

Motivating examples

C.) Random interventions at random times
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– sporulation (spore formation)

(Nature reviews: Microbiology)

– secretion of antibiotics ,
to feed on competing bacteria

– secretion of hydrolytic enzymes ,
to scavenge extracelluar proteins

– induction of ‘competence ’,
feeding on and incorporating exogenous DNA
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Growth in a random environment

It was observed in growth studies under 
resource limitations that:

– The ‘decision’ to sporulate is random: 

Motivating examples

C.) Random interventions at random times
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– The ‘decision’ to sporulate is random: 
some cells do, others do not, under the same circumstances  

– Under the same circumstances, the same effect for the population: 
fixed fraction of cells that have sporulated

– The fraction depends on the provided circumstances

For each ‘type of environment’ the population compo sition 
converges in simulations to a uniquely determined d istribution. 

Can this be understood / proven analytically?
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Part I
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Mathematical modeling
and main mathematical question
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A.) Random interventions at fixed times
Sampling / harvesting …

Simplest realistic model for population growth: 

Verhulst’s or logistic growth model
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Modification to the Malthusean exponential growth model

in which the growth rate r is limited by population size
(e.g. due to a resource limitation)
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A.) Random interventions at fixed times
Sampling / harvesting …
Initial value problem: 

Modeling
-- examples --
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Unique solution for each                 :  

Solution operator:

Explicit solution in this example:
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A.) Random interventions at fixed times
Sampling / harvesting …
Initial value problem: 

Modeling
-- examples --
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Unique solution for each                 :  

Solution operator:

Explicit solution is not required: 

(biologically unfeasible)

Must understand the deterministic dynamics. Here simply
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A.) Random interventions at fixed times
Sampling / harvesting …
Random size sample / catch: 

There is a maximal catch size

Modeling
-- examples --
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At time of intervention an instantaneous jump in population state                
.             occurs, where the jump

has a distribution        that depends on    : 
the population size just before intervention.
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A.) Random interventions at fixed times
Sampling / harvesting …
Random size sample / catch: 

There is a maximal catch size

Modeling
-- examples --
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distribution (typical example):

small

0

– small catch
large

0

– close to 
maximal catch

‘State dependent jump distribution’
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A.) Random interventions at fixed times
Sampling / harvesting …
For small     : one may catch all with positive
probabilty, leading to population extinction.

Modeling
-- examples --
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0 0

Point mass
at

This assures that the state of the system remains i n  
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A.) Random interventions at fixed times
Sampling / harvesting …

A realization of a trajectory:

Modeling
-- examples --
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A.) Random interventions at fixed times
Sampling / harvesting …
To analyze the long-term dynamics of the 
resulting process, consider 

: state of the system just after the n-th

Modeling
-- examples --
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intervention, at 

: distribution of

Then

where               ,

: distribution of the state just before n-th intervention
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A.) Random interventions at fixed times
Sampling / harvesting …
To analyze the long-term dynamics of the 
resulting process, consider 

: state of the system just after the n-th

Modeling
-- examples --
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intervention, at 

: distribution of

Then

where               ,

(push-forward)
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A.) Random interventions at fixed times
Sampling / harvesting …
To analyze the long-term dynamics of the 
resulting process, consider 

: state of the system just after the n-th

Modeling
-- examples --

(21) Sander Hille 21 June 2013 Bedlewo

intervention, at 

: distribution of

Then

where               .
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A.) Random interventions at fixed times
Sampling / harvesting …
To analyze the long-term dynamics of the 
resulting process, consider 

: operator on probability measures

Modeling
-- examples --
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for                measurable.

: operator on probability measures
on       , defined by  

Determine the possible dynamics of the associated m ap iteration:  
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1.) General theory of Markov chains
Meyn & Tweedie (1993 / 2009), Markov chains and stochastic stability

– T-chains, e-chains 

– Applicable when state space is locally compact, Hausdorff.

Determine the possible dynamics of
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– Framework designed for varying intervention times

– Applicable when state space is locally compact, Hausdorff.
– Focus on convergence to a unique invariant distribution 

2.) Piecewise Deterministic Markov Processes (PDMPs)
Davis (1984), J.R. Statist. Soc. B 46 (3), 353-388.
Jacobsen (2006), Point process theory and applications

– Results not readily applicable to fixed time points
– Main results in locally compact state spaces (with few exceptions).
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Analysis frameworks

3.) Stochastic Differential Equations (SDEs)

– Current framework of SDEs does not fit…

Brownian motion or jump process

(23) Sander Hille

Shape of distribution of intervention must be allowed 
to depend on state, not ‘only’ amplitude…

21 June 2013 Bedlewo

For particular applications, an approach that cover s 
infinite dimensional state spaces is needed…

Brownian motion or jump process
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-- examples in infinite dimensions -- Mathematisch
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A.) Random interventions at fixed times
Population with non-overlapping generations

Annual plants

Many examples:
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A.) Random interventions at fixed times
Population with non-overlapping generations

Annual plants

Many examples:

Further applications
-- examples in infinite dimensions --
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Pests: potato beetle larvae

Insect populations
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A.) Random interventions at fixed times
Population with non-overlapping generations

Colorado potato beetle life cycle
Pupa (soil)

Further applications
-- examples in infinite dimensions --
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Pupa in diapause

Adult

Eggs

Larvae
(4 stages 
/ instars) In new 

growing 
season

(up to 800 per female)

3- 4 x
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A.) Random interventions at fixed times
Population with non-overlapping generations

Questions:

Further applications
-- examples in infinite dimensions --
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How will the population of pest insect develop in the 
presence of natural predators? 

What are the effects of fluctuations in (long-term) 
weather conditions on population development?
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A.) Random interventions at fixed times
Population with non-overlapping generations

A population model:
:  bounded open subset of       with 

sufficiently smooth boundary         (e.g. C2)

Further applications
-- Infinite dimensions: a model --

In dispersal stage each disperses over the 
domain, interacting with the other species, and 
reproducing.
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sufficiently smooth boundary         (e.g. C )

‘island’ / ‘region with natural  impassable boundaries’

Two different species of insects:
prey – (‘victims’)
predator  –
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A.) Random interventions at fixed times
Population with non-overlapping generations

A population model:

Dispersal and interaction :

Further applications
-- Infinite dimensions: a model --

(28) Sander Hille 21 June 2013 Bedlewo

(Neumann conditions on        ) 

Species reproduction and 
interaction during growth season

Dispersal
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A.) Random interventions at fixed times
Population with non-overlapping generations

A population model:

Dispersal and interaction :

Further applications
-- Infinite dimensions: a model --
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(Neumann conditions on        ) 

(for                 ;    : duration of growth season)      

Pupae in diapause for each species:
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A.) Random interventions at fixed times
Population with non-overlapping generations

A population model:

A fraction of the pupae in diapause at a 
location will re-emerge as adult in the next 

Further applications
-- Infinite dimensions: a model --
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location will re-emerge as adult in the next 
growing season.

Survival from diapause:
the initial conditions     and     for the next generation dispersal stage
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A.) Random interventions at fixed times
Population with non-overlapping generations

A population model:

Thus, we obtain a deterministic map   

Further applications
-- Infinite dimensions: a model --
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that maps the population composition at the start of the growth 
season to the corresponding situation at start of the next:
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A.) Random interventions at fixed times
Population with non-overlapping generations

A population model:

Addition of randomness in:

survival from diapause

Further applications
-- Infinite dimensions: a model --
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(population (sub)model for the growing season)

survival from diapause
– predation during winter
– harshness of winter

duration of growth season
– weather conditions



Mathematisch
Instituut

A.) Random interventions at fixed times
Population with non-overlapping generations

Model distribution of the state of the 
system at the start of each growing 
season (year)

Further applications
-- Infinite dimensions: a model --
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season (year)

Similar set-up as for the logistic growth model, but now 
in infinite dimensional state space
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The fixed-time problem
-- general formulation --

Deterministic system:
:                 (separable) Banach space

:         closed subset
:   continuous map

Random jumps:

(e.g. given by a solution operator                 )

(33) Sander Hille 21 June 2013 Bedlewo

Region in which system state 
can be after intervention

Y: Instantaneous 
random displacement



Mathematisch
Instituut

The fixed-time problem
-- general formulation --

Deterministic system:
:                 (separable) Banach space

:         closed subset
:   continuous map

Random jumps:

(e.g. given by a solution operator                 )
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The fixed-time problem
-- general formulation --

Deterministic system:
:                 (separable) Banach space

:         closed subset
:   continuous map

Random jumps:

(e.g. given by a solution operator                 )
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+ condition on                   such that               for all     

The states                               form a Markov chain 
with transition operator:



Analysis frameworks
-- applicability in infinite dimensions -- Mathematisch
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Determine the possible dynamics of
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Analysis frameworks
-- applicability in infinite dimensions -- Mathematisch
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1.) General theory of Markov chains
Meyn & Tweedie (1993 / 2009), Markov chains and stochastic stability

– T-chains, e-chains 

– Applicable when state space is locally compact, Hausdorff.

Determine the possible dynamics of
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– Framework designed for varying intervention times

– Applicable when state space is locally compact, Hausdorff.
– Focusses on convergence to a unique invariant distribution 

2.) Piecewise Deterministic Markov Processes (PDMPs)
Davis (1984), J.R. Statist. Soc. B 46 (3), 353-388.
Jacobsen (2006), Point process theory and applications

– Results not readily applicable to fixed time points
– Main results in locally compact state spaces (with few exceptions).
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What does work in non-locally compact state spaces?

4.) Theory for Markov operators that satisfy partic ular 
equicontinuity properties

– non-expansive Markov operators
– e-property (in different variants)

(35) Sander Hille 21 June 2013 Bedlewo

– e-property (in different variants)

-- Break --



Mathematisch
Instituut

Part II
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Mathematical preliminaries
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Recall main (mathematical) question:

So we need to discuss:

Determine the possible dynamics of

(37) Sander Hille 21 June 2013 Bedlewo

(1) Useful topologies on spaces of measures  (          ,            ,         , …)   

(2) Regularity classes for P, relative to these topologies
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Assume throughout that S is a Polish space, 
d a metric on S that metrizes the topology, yielding a complete separable 
metric space

:        finite (signed) measures on S

View S as a measurable space, with its Borel σ-algebra     . 

Mathematical preliminaries
-- notation --
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:        finite (signed) measures on S

:      finite positive measures on S
:       probability measures on S

:       Dirac (point) measure at x if 

otherwise 
:      bounded measurable functions

:      bounded continuous functions
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Various definitions circulate:

Definition:  a Markov operator on S is a map
that satisfies:

1.) On measures:

Mathematical preliminaries
-- Markov operators --

(39) Sander Hille

2.) On densities: replace                 by an  L1-space:   

3.) Dually, on functions:
A (dual) Markov operator on S is a map
that is linear, positive and satisfies:

:  bounded measurable functions

21 June 2013 Bedlewo
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Total variation norm: the natural metric related to  ordering

iff for all

is an ordered vector space :

has a lattice structure :

Mathematical preliminaries
-- ordering and lattice structure --
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has a lattice structure :

The Jordan decomposition derives from these:
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Total variation norm: the natural metric related to  ordering

is a Banach lattice :

There exists an unique norm (up to equivalence)          on              
such that the lattice operations (∨, ∧) are continuous and

Mathematical preliminaries
-- ordering and lattice structure --
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such that the lattice operations (∨, ∧) are continuous and

for all

Total variation norm :

(This holds for any measurable space           )
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Total variation norm: the natural metric related to  ordering

If S is a topological space,     its Borel σ-algebra, then

That is,             is viewed as linear subspace of the dual              of            , 

Mathematical preliminaries
-- ordering and lattice structure --
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That is,             is viewed as linear subspace of the dual              of            , 
equipped with the restriction of the dual norm. 

The maps                   are continuous, but generally                 is not

if 

The latter can be ‘repaired’ by using the weak topology 
Continuity of lattice operations is then lost.
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Fortet-Mourier or Dudley norm

d: metric such that (S,d) is separable and complete a Polish space; 

:    space of bounded Lipschitz functions (for d):
all                   for which

Mathematical preliminaries
-- (metric) topologies on measures --

(43) Sander Hille 21 June 2013 Bedlewo

(Dudley)
(Fortet-Mourier )

Two equivalent norms on              that make it a Banach space:
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Fortet-Mourier or Dudley norm

Lemma: (Dudley 1966)

is injective.

:    space of measures equipped with dual norm of 

Mathematical preliminaries
-- (metric) topologies on measures --

(44) Sander Hille 21 June 2013 Bedlewo

for Dudley norm;  

Similarly, 

:    space of measures equipped with dual norm of 
for Fortet-Mourier norm;  
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The map                 is continuous, but generally                    are not

is not complete generally 

For                        one has:  

Some interesting functional analytic properties:

Mathematical preliminaries
-- (metric) topologies on measures --
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The restriction of the                                weak topology to

(Dudley, 1966)Theorem:

equals the restriction of the              -norm topology.

(H. & Worm, 2009)Theorem:

21 June 2013 Bedlewo
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Back to the main mathematical question:

Determine the possible dynamics of

Simplest possible behaviour:

(46) Sander Hille 21 June 2013 Bedlewo

(‘Everything converges to      ‘)

Definition:  a Markov operator P on S is asymptotically stable with 
respect to the norm        on              when it has a unique invariant 
measure       , i.e.                 , such that for all .
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Definition:  a Markov operator P on S is regular when there is a dual 
Markov operator U such that                                  for all  .

Definition:  a regular Markov operator P on S is Feller when the dual 
operator U satisfies                                   .

Equivalent non-dual formulation:   

Mathematical preliminaries
-- regularity of Markov operators --

(47) Sander Hille

Definition:  a Markov operator P on S is ultra-Feller when
is continuous for the             - norm topology 

Ultra-Feller Feller Regular

Equivalent non-dual formulation:   

P is continuous for the               - norm topology 

is continuous for the             - norm

21 June 2013 Bedlewo
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Part II
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Approach to mathematical analysis
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-- an analysis approach -- Mathematisch
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Recall the mathematical set-up: 

(deterministic system)

(distribution for random jumps)

(48) Sander Hille 21 June 2013 Bedlewo

(Markov operator)

0 0 0



The sampling problem
-- an analysis approach -- Mathematisch
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Establish particular regularity of  

(A1) for all            ;

(A2)                                         ,  with               when 

(49) Sander Hille 21 June 2013 Bedlewo

(the fewer individuals there are, the more likely you catch them all.)

(A4) as            .

(i.e.,                                                     is continuous) 

(A2)                                         ,  with               when 
0

(A3)       is continuous as map                             .

Theorem: (A1) – (A4) imply that     is ultra-Feller on        .
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How to approach the problem of asymptotic stability ?

1. ‘Trace supports ’

Obtaining information on the support of the 
invariant measure is interesting in itself, 
because the computation of the precise 

The sampling problem
-- an analysis approach --

(50) Sander Hille 21 June 2013 Bedlewo

because the computation of the precise 
distribution will often be (too) hard to achieve.

(A1) for all            ;
yields
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How to approach the problem of asymptotic stability ?

1. ‘Trace supports ’
So define

Then

The sampling problem
-- an analysis approach --

(51) Sander Hille 21 June 2013 Bedlewo

0

If                 , no fixed points 

Dynamics of iterating     :  

iff
Two fixed points:

critical catch size
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How to approach the problem of asymptotic stability ?

1. ‘Trace supports ’
So define

Then

The sampling problem
-- an analysis approach --

(51) Sander Hille 21 June 2013 Bedlewo

0

If                                  :  
Dynamics of iterating     :  

if

if
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The sampling problem
-- an analysis approach --

How to approach the problem of asymptotic stability ?

1. ‘Trace supports’

(In this formulation: Alkurdi, H. & Van Gaans, 2013)Theorem:

Let P be a regular Markov operator on a Polish space such that there 

2. Use general result:

(52) Sander Hille 21 June 2013 Bedlewo

Let P be a regular Markov operator on a Polish space such that there 
exists               for which 

Where                                      . 

Then for all              one has for all                      
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How to verify                                                     ?

The sampling problem
-- an analysis approach --

(where                     with                         ,              in this case)

(    is invariant under    )

(53) Sander Hille 21 June 2013 Bedlewo

(    is invariant under    )
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How to verify                                                     ?

The sampling problem
-- an analysis approach --

Use obtained information on the dynamics of supports:

(where                     with                         ,              in this case)

(53) Sander Hille 21 June 2013 Bedlewo

Use obtained information on the dynamics of supports:

if if

1.  There exists     such that for all                 

(use compactness of      here, a.o….)
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How to verify                                                     ?

The sampling problem
-- an analysis approach --

1.  There exists     such that for all                 

(where                     with                         ,              in this case)

(53) Sander Hille 21 June 2013 Bedlewo

1.  There exists     such that for all                 

2.  Therefore,                                  for all
(                                                                              )
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How to verify                                                     ?

The sampling problem
-- an analysis approach --

1.  There exists     such that for all                 

(where                     with                         ,              in this case)

(53) Sander Hille 21 June 2013 Bedlewo

1.  There exists     such that for all                 

2.  Therefore,                                  for all

is continuous (ultra-Feller property),

3.                                                    is continuous. 

so 

4.  The bound for      away from 0 now follows from compactness of 
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The sampling problem
-- an analysis approach --

Let                                . The interval               is P-invariant and the  
restriction has a unique invariant measure       with support 

Theorem: (Alkurdi, H. & Van Gaans 2013) 

For any measure     for which                                 , 

(54) Sander Hille 14 June 2012 Gdansk

(critical catch size)

That is,       is asymptotically stable on               .    

Moreover, the rate of convergence is exponential for measures with 
compact support.    

How large can be
‘small interventions’

Support of      is How much effect?
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This is not all behaviour of                          , in this case 

is another invariant measure of 

Because, according to (A1),

The sampling problem
-- an analysis approach --

(55) Sander Hille 21 June 2013 Bedlewo

Because, according to (A1),

and     are all ergodic measures for      on        . Thus, any 
invariant measure is a convex combination of these two ergodic
measures. 

Theorem: (Alkurdi, H., Van Gaans, 2013) 
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This is not all behaviour of                          , in this case 
Define the Cesaro-averages:

The sampling problem
-- an analysis approach --

Hence,
For any           ,                 converges to an invariant measure (for             ).     
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One can show that          is continuous.

may be interpreted as the ‘extinction probability ’, because of

Theorem: (Alkurdi, H., Van Gaans, 2013) 

Hence,
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Summary of approach

The sampling problem
-- an analysis approach --

1.  Study the dynamics of supports                       as 

2.  Use (1), compactness of      , and ultra-Feller property of         

to obtain a lower-bound type of estimate: 
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3.  Apply general result yielding exponential rate convergence in        

How to approach the infinite dimensional case?



In infinite dimensions
-- sketch -- Mathematisch
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Recall:

:                 (separable) Banach space

:         closed subset
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:   continuous map

Focus on persistence of asymptotic stability of equilibria of     :

(A1’)          is a strict contraction on a closed ball       around  

(A2’)                               is a compact map

(replaces the compactness of state space; holds for diffusion in e.g )  
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(A1’)          is a strict contraction on a closed ball       around  

(A2’)                               is a compact map
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(A2’)                               is a compact map

(A3’)    

(replaces (A3)       is continuous as .



In infinite dimensions
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(A1’)          is a strict contraction on a closed ball       around  

(A2’)                               is a compact map
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(A2’)                               is a compact map

(A3’)    

(A4’)                                    is bounded for all             and    

(replaces (A1)                                                         for all            ;
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(A1’)          is a strict contraction on a closed ball       around  

(A2’)                               is a compact map
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(A2’)                               is a compact map

(A3’)    

(A4’)                                    is bounded for all             and    

(A5’)                                                          for all     

‘smallness’ ,    :  Lipschitz constant of    on      ,        :   radius of      
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Moreover,      leaves      invariant and the restriction of      to

Asume that (A1’) – (A5’) hold. Then      is a non-expansive Markov 
operator, i.e.                                                 . 

Theorem: (Alkurdi, H. Van Gaans, 2013) 

is asymptotically stable. In particular, there exists a unique

(60) Sander Hille 21 June 2013 Bedlewo

is asymptotically stable. In particular, there exists a unique
invariant measure      in             such that 

for all 

Thus, stability persists when ‘small’ random interventions 
are added (‘small’ defined by Assumption (A5’))
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Let             be a complete separable metric space. 

I.e., there exists a unique invariant measure    , such that for all     

Theorem: (Szarek 1997) 

,             

Any non-expansive, locally and globally concentrating Markov 
operator on      is asymptotically stable.

In infinite dimensions
-- the fundamental ingredient --
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,             

Non-expansive:
(note: Markov operator is non-expansive in            )

Globally concentrating:
For every            and every bounded Borel set             , there exists 
a bounded Borel set              and integer      such that
for all                   concentrated on     and all            .   
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Let             be a complete separable metric space. 

I.e., there exists a unique invariant measure    , such that for all     

Theorem: (Szarek 1997) 

,             

Any non-expansive, locally and globally concentrating Markov 
operator on      is asymptotically stable.

In infinite dimensions
-- the fundamental ingredient --
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,             

Locally concentrating:

For every            there exists            , such that for every bounded
Borel set             , there exists a Borel set     with   
and integer      , such that                       for all             and     
concentrated on     .



In infinite dimensions
-- a similar approach -- Mathematisch
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How to check the technical conditions?
The philosophy is the same as for the finite dimensional (1D) case:

– Consider the support evolution map , or Markov set function
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In this case,

(Recall the 1D example – ‘sampling / harvesting’:

if
if if

0
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The philosophy is the same as for the finite dimensional (1D) case:

– Consider the support evolution map , or Markov set function

In infinite dimensions
-- a similar approach --

How to check the technical conditions?
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– Show that it is a strict contraction in Hausdorff distance 

with                  . 

– If             is complete, then so is the space of bounded closed 
subsets, equipped with 
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In infinite dimensions
-- a similar approach --

How to check the technical conditions?

– Thus,        has a unique fixed point      , a closed bounded set

Assume that (A1’)—(A5’) hold. 

Theorem: (Alkurdi, H., Van Gaans 2013) 
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For any              and for all          ,  there exists             and    
such that                                  for all             and               .

– The local concentrating property is an immediate consequence:. 

For every            there exists            , such that for every bounded
Borel set             , there exists a Borel set     with   
and integer      , such that                       for all             and     
concentrated on     .



Outlook Mathematisch
Instituut

– Assumptions (A1’) – (A5’) hold in a 
family of models with dispersal 
and non-overlapping generations.

– So persistence of stability is assured in that infinite 
dimensional setting (but now for             instead of           ).
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– For further application the extinction problem 
(for one of the species – the Colorado beetle) will be considered:

‘Pest control’

– The general case, ‘random interventions at random times’ 
requires further fundamental mathematical research for
asymptotic stability results, applicable in that setting
(what are the effects of randomness in the duration of the growth season?)
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